本文旨在以mysql开发工程师的角度来解释数据库索引的原理和如何优化慢查询。 一个慢查询引发的思考select count(*) from task where status=2 and operator_id=20839 and operate_time>1371169729 and operate_time<1371174603 and type=2;
系统使用者反应有一个功能越来越慢,于是工程师找到了上面的SQL。 MySQL索引原理
##索引目的
##索引原理 ###磁盘IO与预读 前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考: 考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
###索引的数据结构 ###详解b+树 如上图,是一颗b+树,关于b+树的定义可以参见 B+树 ,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
###b+树的查找过程
###b+树性质 慢查询优化关于MySQL索引原理是比较枯燥的东西,大家只需要有一个感性的认识,并不需要理解得非常透彻和深入。我们回头来看看一开始我们说的慢查询,了解完索引原理之后,大家是不是有什么想法呢?先总结一下索引的几大基本原则 建索引的几大原则
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。 回到开始的慢查询
根据最左匹配原则,最开始的sql语句的索引应该是status、operator_id、type、operate_time的联合索引;其中status、operator_id、type的顺序可以颠倒,所以我才会说,把这个表的所有相关查询都找到,会综合分析; select * from task where status = 0 and type = 12 limit 10; select count(*) from task where status = 0 ; 那么索引建立成(status,type,operator_id,operate_time)就是非常正确的,因为可以覆盖到所有情况。这个就是利用了索引的最左匹配的原则 查询优化神器 - explain命令关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网 explain-output ,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。 慢查询优化基本步骤
0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE 几个慢查询案例下面几个例子详细解释了如何分析和优化慢查询 复杂语句写法很多情况下,我们写SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句 select distinct cert.emp_id from cm_log cl inner join ( select emp.id as emp_id, emp_cert.id as cert_id from employee emp left join emp_certificate emp_cert on emp.id = emp_cert.emp_id where emp.is_deleted=0 ) cert on ( cl.ref_table='Employee' and cl.ref_oid= cert.emp_id ) or ( cl.ref_table='EmpCertificate' and cl.ref_oid= cert.cert_id ) where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00'; 0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢 53 rows in set (1.87 sec) 1.explain +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer | | 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where | | 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index | +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查
返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。 如何优化 后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,我们就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。 优化过的语句如下 select emp.id from cm_log cl inner join employee emp on cl.ref_table = 'Employee' and cl.ref_oid = emp.id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 unionselect emp.id from cm_log cl inner join emp_certificate ec on cl.ref_table = 'EmpCertificate' and cl.ref_oid = ec.id inner join employee emp on emp.id = ec.emp_id where cl.last_upd_date >='2013-11-07 15:03:00' and cl.last_upd_date<='2013-11-08 16:00:00' and emp.is_deleted = 0 4.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致 5.现有索引可以满足,不需要建索引 6.用改造后的语句实验一下,只需要10ms 降低了近200倍! +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ 53 rows in set (0.01 sec) 明确应用场景举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的 select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 ); 0.先看看运行多长时间,951条数据6.22秒,真的很慢 951 rows in set (6.22 sec) 1.先explain,rows达到了361万,type = ALL表明是全表扫描 +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+| 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ 2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条 3.让explain的rows 尽量逼近951 看一下accurate_result = 1的记录数 select count(*),accurate_result from stage_poi group by accurate_result; +----------+-----------------+ | count(*) | accurate_result | +----------+-----------------+ | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +----------+-----------------+ 我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据 再看一下sync_status字段的情况 select count(*),sync_status from stage_poi group by sync_status; +----------+-------------+ | count(*) | sync_status | +----------+-------------+ | 3080 | 0 | | 3085413 | 3 | +----------+-------------+ 同样的区分度也很低,根据理论,也不适合建立索引 问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的 4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据 5.根据建立索引规则,使用如下语句建立索引 alter table stage_poi add index idx_acc_status(accurate_result,sync_status); 6.观察预期结果,发现只需要200ms,快了30多倍。 952 rows in set (0.20 sec) 我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。 无法优化的语句select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 order by c.created_time desc limit 0 , 10;
还是几个步骤 10 rows in set (13.06 sec) 1.explain +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+| 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。 select count(*)from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 +----------+| count(*) | +----------+| 778878 | +----------+1 row in set (5.19 sec)
发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢? 验证一下效果 预计在1ms内,提升了13000多倍! ```sql 10 rows in set (0.00 sec)
本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表! select sql_no_cache c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 2875 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10;Empty set (2 min 18.99 sec)
2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。 慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。 写在后面的话本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!” (责任编辑:最模板) |