多核CPU如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。 如果写一个死循环的话,会出现什么情况呢? 打开Mac OS X的Activity Monitor,或者Windows的Task Manager,都可以监控某个进程的CPU使用率。 我们可以监控到一个死循环线程会100%占用一个CPU。 如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。 要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。 试试用Python写个死循环: import threading, multiprocessing def loop(): x = 0 while True: x = x ^ 1 for i in range(multiprocessing.cpu_count()): t = threading.Thread(target=loop) t.start() 可以看到!!启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有160%,也就是使用不到两核 即使启动100个线程,使用率也就170%左右,仍然不到两核。 但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢? 因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核 GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。 所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点 不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。(这里要比较一下得失了,是否非要使用线程,若是放弃线程使用进程有什么得失,廖老师在这里并没有提到) 小结
|